Implementar un sistema predictivo

En este ejemplo, aprenderemos cómo crear e implementar un modelo predictivo que ayude en la predicción de los precios de la vivienda utilizando el script python. El marco importante utilizado para la implementación del sistema predictivo incluye Anaconda y "Jupyter Notebook".

Siga estos pasos para implementar un sistema predictivo:

Paso 1 : implemente el siguiente código para convertir valores de archivos csv a valores asociados.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import mpl_toolkits

%matplotlib inline
data = pd.read_csv("kc_house_data.csv")
data.head()

El código anterior genera el siguiente resultado:

El código anterior genera

Paso 2 : ejecute la función de descripción para obtener los tipos de datos incluidos en los atributos de los archivos csv.

data.describe()
Describir la función

Paso 3 : podemos descartar los valores asociados en función de la implementación del modelo predictivo que creamos.

train1 = data.drop(['id', 'price'],axis=1)
train1.head()
Valores asociados

Paso 4 : puede visualizar los datos según los registros. Los datos se pueden utilizar para el análisis de la ciencia de datos y la producción de documentos técnicos.

data.floors.value_counts().plot(kind='bar')

Análisis de ciencia de datos